工作经历: |
2003-2004 厦门大学数学科学就要插,我去操,五月婷婷俺也去,开心五月婷婷俺也去讲师 2004-2006 吉林大学数学就要插,我去操,五月婷婷俺也去,开心五月婷婷俺也去讲师 2006至今 吉林大学数学就要插,我去操,五月婷婷俺也去,开心五月婷婷俺也去副教授 |
学术论文: |
1. Xia, P, Dong, T, Zhang, S, Lei, N. The Bulirsch‐Stoer algorithm for multivariate rational interpolation. Math Meth Appl Sci. 2018; 41: 7698– 7710 2. Dong, T. A two-dimensional improvement for Farr-Gao algorithm. J Syst Sci Complex 29, 1382–1399 (2016) 3. Z. Li, S. Zhang, T. Dong, The discretization for a special class of ideal projectors, ISRN Appl. Math. 2012 (2012) 359069. 4. Z. Li, S. Zhang, T. Dong, Finite sets of affine points with unique associated monomial quotient bases, J. of Algebr. Appl. 11 (2) (2012) 1250025. 5. Z. Li, S. Zhang, T. Dong, On existence of certain error formulas for a special class of ideal projectors, J. Approx. Theory 163 (9) (2011) 1080–1090. 6. P. Li, T. Dong, N. Lei, Constructive theory of multivariate rational interpolation of degree zero with algorithm, Numer. Math. J. Chinese Univ. 32 (4) (2010) 303–314. 7. Z. Li, S. Zhang, T. Dong, L. Liu, An algorithm of approximate vanishing ideal based on constrained total least squares, J. Systems Sci. Math. Sci. 30 (11) (2010) 1478–1490. 8. X. Wang, S. Zhang, T. Dong, D. Li, Bivariate Lagrange interpolation of minimal degree, J.Jilin Univ. Sci. 48 (4) (2010) 609–611. 9. X. Wang, S. Zhang, T. Dong, A bivariate preprocessing paradigm for the Buchberger-M?ller algorithm, J. Comput. Appl. Math. 234 (12) (2010) 3344–3355. 10. X. Wang, S. Zhang, T. Dong, Newton basis for multivariate Birkhoff interpolation, J.Comput. Appl. Math. 22 |